
Towards Automated Secure Web Service

Execution

Béla Genge and Piroska Haller

“Petru Maior” University of Târgu Mureş, Department of Electrical Engineering,
N. Iorga Str., No. 1, (540088) Târgu Mureş, ROMANIA,

{bgenge,phaller}@engineering.upm.ro

http://www.upm.ro

Abstract. Existing solutions for authentication and authorization in
Web services make use of technologies such as SAML or WS-Security.
These provide a static solution by using a set of predefined protocols. We
propose a semantic security protocol model from which security protocol
specifications are generated and automatically executed by participants.
The proposed model consists of a sequential component, implemented as
a WSDL-S specification, and an ontology component, implemented as an
OWL specification. The correctness of the proposed model is ensured by
using a set of rules and algorithms for generating it based on a protocol
model given by the user. We validate our approach by generating and im-
plementing several specifications for existing protocols such as ISO9798
or Kerberos protocols.

Key words: Security protocols, automated execution, ontology, Web
services

1 Introduction

Security protocols are “communication protocols dedicated to achieving security
goals” (C.J.F. Cremers and S. Mauw) [1] such as confidentiality, integrity or
availability.

Existing technologies, such as the Security Assertions Markup Language [16]
(i.e. SAML) or WS-Security [17] provide a unifying solution for the authentica-
tion and authorization issues through the use of predefined protocols. By imple-
menting these protocols, Web services authenticate users and provide authorized
access to resources. However these approaches are rather static, meaning that in
case of new security protocols, services must be reprogrammed.

In this paper we propose a semantic security protocol model (SSPM) for
generating security protocol specifications that can be automatically executed by
participants. The SSPM has two components: a sequential model and an ontology
model. The first component is implemented as a WSDL-S [4] specification while
the second component is implemented as an OWL [12] specification. The role of
the WSDL-S implementation is to describe the message sequences and directions
that must be executed by protocol participants.

944 B. Genge and P. Haller

The role of the OWL implementation is to provide semantic information such
as the construction, processing and implementation of cryptographic operations
(e.g. encryption algorithm, encryption mode, key).

The SSPM is constructed from a given SPM and it must maintain the pro-
tocol’s security properties. For this we propose several generating rules and al-
gorithms that provide a mapping for each component from SPM to SSPM. The
correctness of the proposed rules and algorithms results from the one-to-one
mapping of each component and from the correctness of SPM.

The paper is structured as follows. In section 2 we present the basic protocol
model. In section 3 we present the semantic model with generating rules and
algorithms. Example usage and experimental results are presented in section 4.
We relate our work to others in section 5. We end with a conclusion and future
work in section 6.

2 Protocol Model

Protocol participants communicate by exchanging terms constructed from ele-
ments belonging to the following basic sets: P, denoting the set of role names;
N, denoting the set of random numbers or nonces (i.e. “number once used”); K,
denoting the set of cryptographic keys; C, denoting the set of certificates and M,
denoting the set of user-defined message components.

In order for the protocol model to capture the message component types
found in security protocol implementations [16], [17] we specialize the basic sets
with the following subsets:

– PDN ⊆ P, denoting the set of distinguished names; PUD ⊆ P, denoting
the set of user-domain names; PIP ⊆ P, denoting the set of user-ip names;
PU = {P \ {PDN ∪ PUD ∪ PIP }}, denoting the set of names that do not
belong to the previous subsets;

– NT , denoting the set of timestamps; NDH , denoting the set of random num-
bers specific to the Diffie-Hellman key exchange; NA = {N \ {NDH ∪ NT }},
denoting the set of random numbers;

– KS ⊆ K, denoting the set of symmetric keys; KDH ⊆ K, denoting the set
of keys generated from a Diffie-Hellman key exchange; KPUB ⊆ K, denoting
the set of public keys; KPRV ⊆ K, denoting the set of private keys;

To denote the encryption type used to create cryptographic terms, we define
the following function names:

FuncName ::= sk (symmetric function)

| pk (asymmetric function)

| h (hash function)

| hmac (keyed hash function)

The encryption and decryption process makes use of cryptographic keys.
Decrypting an encrypted term is only possible if participants are in the possession

Towards Automated Secure Web Service Execution 945

of the decryption key pair. In case of symmetric cryptography, the decryption
key is the same as the encryption key. In case of asymmetric cryptography, there
is a public-private key pair. Determining the corresponding key pair is done using
the function −1 : K → K.

The above-defined basic sets and function names are used in the definition
of terms, where we also introduce constructors for pairing and encryption:

T ::= . | P | N | K | C | M | (T,T) | {T}FuncName(T),

where the ‘.’ symbol is used to denote an empty term.
Having defined the terms exchanged by participants, we can proceed with

the definition of a node and a participant chain. To capture the sending and
receiving of terms, the definition of nodes uses signed terms. The occurrence of
a term with a positive sign denotes transmission, while the occurrence of a term
with a negative sign denotes reception.

Definition 1. A node is any transmission or reception of a term denoted as

〈σ, t〉, with t ∈ T and σ one of the symbols +,−. A node is written as −t or

+t. We use (±T) to denote a set of nodes. Let n ∈ (±T), then we define the

function sign(n) to map the sign and the function term(n) to map the term

corresponding to a given node.

Definition 2. A participant chain is a sequence of nodes. We use (±T)∗ to

denote the set of finite sequences of nodes and 〈±t1,±t2, . . . ,±ti〉 to denote an

element of (±T)∗.

In order to define a participant model we also need to define the preconditions
that must be met such that a participant is able to execute a given protocol. In
addition, we also need to define the effects resulting from a participant executing
a protocol.

Preconditions and effects are defined using predicates applied on terms:
CON TERM : T, denoting a generated term; CON PARTAUTH : T, denot-
ing participant authentication; CON CONF : T, denoting the confidentiality
of a given term); CON INTEG : T, denoting the integrity of a given term;
CON NONREP : T, denoting the non-repudiation property for a given term;
CON KEYEX : T, denoting a key exchange protocol.

The set of precondition-effect predicates is denoted by PR CC and the set of
precondition-effect predicate subsets is denoted by PR CC

∗. The types attached
to each protocol term are modeled using the following predicates: TYPE DN : T

to denote distinguished names, TYPE UD : T to denote user-domain names,
TYPE NT : T to denote timestamps, TYPE NDH : T to denote Diffie-Hellman
random numbers, TYPE NA : T to denote other random numbers, TYPE NDH :
T × T × T × P × P to denote Diffie-Hellman symmetric keys, TYPE KSYM :
T × P × P to denote symmetric keys, TYPE KPUB : T × P to denote public
keys, TYPE KPRV : T × P to denote private keys, and TYPE CERT : T × P

do denote certificate terms.
The set of type predicates is denoted by PR TYPE and the set of type predi-

cate subsets is denoted by PR TYPE
∗. Based on the defined sets and predicates

we are now ready to define the participant and protocol models.

946 B. Genge and P. Haller

Definition 3. A participant model is a tuple 〈prec, eff , type, gen, part, chain〉,
where prec ∈ PR CC

∗ is a set of precondition predicates, eff ∈ PR CC
∗ is a set

of effect predicates, type ∈ PR TYPE is a set of type predicates, gen ∈ T
∗ is a

set of generated terms, part ∈ P is a participant name and chain ∈ (±T)∗ is a

participant chain. We use the MPART symbol to denote the set of all participant

models.

Definition 4. A security protocol model is a collection of participant models

such that for each positive node n1 there is exactly one negative node n2 with

term(n1) = term(n2). We use the MPROT symbol to denote the set of all secu-

rity protocol models.

3 Semantic Security Protocol Model

In this section we propose a new semantic security protocol model (SSPM) based
on which we construct security protocol specifications that can be automatically
executed by protocol participants. The proposed model must maintain the se-
curity properties of the protocol and must provide sufficient information for
participants to be able to execute the protocol.

Protocols are given using their SPM model described in the previous section.
Based on this model we generate the corresponding SSPM that has two compo-
nents: the sequential model (SEQM) and the ontology model (ONTM). The first
component is implemented as a WSDL-S specification while the second compo-
nent is implemented as an OWL specification. In the remaining of this section
we provide a description of each component and we provide a set of rules to
generate SSPM from a given SPM.

3.1 Sequential and Ontology Models

We use the symbol URI to denote the set of Uniform Resource Identifiers, CONC

to denote the set of all concepts and CONC
∗ to denote the set of subsets with

elements from CONC.

Definition 5. An annotation is a pair 〈uri, c〉, where uri ∈ URI and c ∈ CONC.

The set corresponding to a SSPM is denoted by ANNOT and the set of subsets

with elements from ANNOT is denoted by ANNOT
∗.

By consulting the WSDL-S specification we define a message as a pair con-
sisting of the message direction and an annotation.

Definition 6. A message is a pair 〈d, a〉, where d ∈ {in, out} and a ∈ ANNOT.

We define MSG to denote a set of messages and MSG
∗ to denote the set of

subsets with elements from MSG.

Next, we define the sequential model as a collection of preconditions, effects
and messages, based on the previous definitions.

Towards Automated Secure Web Service Execution 947

Definition 7. A sequential model is a triplet 〈s prec, s eff , s msg〉, where s prec ∈
ANNOT

∗ is a set of preconditions, s eff ∈ ANNOT
∗ is a set of effects and

s msg ∈ MSG
∗ is a set of messages.

The ontology model follows the description of OWL.

Definition 8. An ontology model is a triplet 〈conc, propr, inst〉, where conc ∈
CONC is a set of concepts, propr ∈ PROPR is a set of properties and inst ∈ INST

is a set of instances. An element from propr is a pair 〈α, β〉, where α is a unique

id and β is a syntactic construction denoting the property name.

Let pr1 = 〈α1, β1〉 and pr2 = 〈α2, β2〉. Then pr1 = pr2 iff α1 = α2 and

β1 = β2. We define the function ()id to map the α component and the function

()nm to map the β component of a given property.

We use PROPR to denote the set of all properties and INST to denote the set

of all instances. We use PROPR
∗ to denote the set of all subsets with elements

from PROPR and INST
∗ to denote the set of all subsets with elements from INST.

In order to handle the previously defined ontology model we define the func-
tion ()d : PROPR → CONC to map the domain concept of a given property,
()c : PROPR → CONC to map the category concept of a given property,
(,)ci : CONC × PROPR → INST to map the instance corresponding to a do-
main concept and property, ()se : CONC → CONC

∗ to map the set of concepts
for which the given concept is parent, ()p : CONC → PROPR

∗ to map the set
of properties for which the given concept is domain.

3.2 Generating the Semantic Security Protocol Model

In order to generate the SSPM for a given SPM, we start with a core ontology
model (OM) (figure 1) that contains concepts found in classical security pro-
tocols. The core OM was constructed by consulting security protocols found in
open libraries such as SPORE [15] or the library published by John Clark [5].

The core ontology is constructed from 7 sub-ontologies. The sub-ontologies
that must be extended with new concepts for each SSPM are denoted in figure
1 by interrupted lines, while the permanent sub-ontologies are denoted by con-
tinuous lines. The new concepts are generated from SPM, however, information
that is not available in the SPM must be provided by the user.

The SecurityProperty sub-ontology contains concepts such as Authentication,
Confidentiality or Session key exchange. The TermType sub-ontology includes
concepts related to term types used in security protocol messages such as Sym-

metricKey, PublicKey or ParticipantName. Concepts related to cryptographic
specifications such as encryption algorithms or encryption modes are found in
the sub-ontology CryptoSpec. In order to model modules needed to extract keys,
names or certificates we use the LoadingModule sub-ontology. The Participant-

Role sub-ontology defines concepts modeling roles handled by protocol partici-
pants such as Initiator, Respondent and Third Party.

The Knowledge sub-ontology contains 5 concepts: PreviousTerm, Accessed-

Module, InitialTerm, GeneratedTerm and DiscoveredTerm. Each concept defines

948 B. Genge and P. Haller

a class of terms specific to security protocols: terms from previous executions,
modules, initial terms, generated terms and discovered terms.

The last sub-ontology is CommunicationTerm, which defines two concepts:
SentTerm and ReceivedTerm. This sub-ontology is extended for each SEM-S
with concepts that are sent or received. For each concept, functional properties
are defined denoting the operations performed on the terms corresponding to
concepts. The concepts used to extend the core ontology are specific to each

Fig. 1: Core ontology of SSPM

protocol, however, the defined properties are applied on all constructions. From
these properties we mention: hasKey, isStored, isVerified.

In order to generate the SSPM from a given SPM we define a set of rules and
generating algorithms. The developed rules use the ←r operator to denote
set reunion and the ←a operator to denote a value transfer.

The first two rules generate the predicate concepts corresponding to precondi-
tions prec from a SPM, where the function gc : T→ CONC is used to generate the
concept corresponding to a given term and the function gcc : PR CC → CONC

is used to generate the concept corresponding to a given precondition predicate:

pr ∈ prec pr = CON TERM (t)

c←a gc(t) s prec ←r {〈uri, c〉} (InitialTerm)se ←r {c}
pr term,

pr ∈ prec pr 6= CON TERM (t)

s prec ←r {〈uri, gcc(pr)〉, 〈uri, gc(t)〉}
pr propr.

The rules generating the effects have a similar structure because of the eff

set. For each positive or negative node there is a corresponding concept in the
SentTerm and ReceivedTerm sub-ontologies, generated by the following rules:

n ∈ chain sign(n) = +

c←a gtx(term(n)) s msg ←r {〈out, c〉} (SentTerm)se ←r {c}
msg tx,

n ∈ chain sign(n) = −

c←a grx(term(n)) s msg ←r {〈in, c〉} (ReceivedTerm)se ←r {c}
msg rx.

The concatenated terms corresponding to each transmitted or received term
are modeled using similar rules. For each sent term the SSPM must provide the

Towards Automated Secure Web Service Execution 949

construction operations and for each received term the SSPM must provide pro-
cessing operations. Sub-concepts of SentTerm are connected to sub-concepts of
Knowledge through the isExtracted property, generated according to the follow-
ing rule, where we used the function PR CC

∗ → ID to generate a new property
id:

c ∈ (SentTerm)se
p←a 〈gid(propr), isExtracted〉 (c)p ←r {p} (p)c ∈ (Knowledge)se

con extr.

Processing of received terms is done according to the type of the given term
and to the knowledge available to the user. The modeled operations introduce
constraints on the type and location of knowledge through the following rules,
where we used the E SYM : CONC predicate to denote symmetric encryption:

c ∈ (ReceivedTerm)se p ∈ (c)p (p)nm = isDecrypted

c′ ←a (p)c E SYM (c′) ∨ E SYM (c′) (c′) ∈ (DiscoveredTerm)se
con decr,

c ∈ (ReceivedTerm)se p ∈ (c)p (p)nm = isStored

c′ ←a (p)c (c′) ∈ (DiscoveredTerm)se
con stored,

c ∈ (ReceivedTerm)se p ∈ (c)p (p)nm = isV erified

c′ ←a (p)c (c′) ∈ {(DiscoveredTerm)se \ (AccessedModule)se}
con verif.

In the Knowledge sub-ontology, each concept has an isOfType property at-
tached based on which participants can decide on the operations to execute. For
each type, additional properties are defined such as the hasSymmAlg or hasKey

properties for symmetric encrypted terms. The rules based on which these prop-
erties are generated are specific to each type. For example, the following rules
define the algorithm type and key for an encrypted term that must be processed
or constructed:

c ∈ (Knowledge)se E SYM (c)

p←a 〈gid(propr), hasSymmAlg〉 (c)p ←r {p} (c, p)ci ∈ (Symmetric)se
sim alg,

c ∈ (Knowledge)se E SYM (c)

p←a 〈gid(propr), hasKey〉 (c)p ←r {p} (p)c ∈ (Knowledge)se
sim key.

The rules presented above are executed by algorithms. For example, modeling
positive nodes in SSPM is done through the use of algorithm 1. Here, the set of
knowledge KNOW corresponding to each executing participant grows with the
construction and reception of each new term. We used the function mpart : T→
T
∗ to map the set of concatenated terms and the keyword “Exec” to denote the

execution of sub-algorithms.

3.3 Correctness of SSPM

In the generation process of SSPM from a given SPM, we consider a correct
SPM constructed by the user. With the large number of attacks reported in the

950 B. Genge and P. Haller

Algorithm 1 Model positive and negative nodes

Require: n ∈ (±T), sign(n) = +
for all t ∈ mpart(term(n)) do

Let c = gc(t)
Let p⇐ @con extr(c)
if t ∈ KNOW then

(p)c ←a c

else if t = {t′}f(k) then
(GeneratedTerm)se ←r {c}
Exec ModelEncryptedGenerated(t)

else if t ∈ gen then
(GeneratedTerm)se ←r {c}
Exec ModelP lainGenerated(t)

else
(DiscoveredTerm)se ←r {c}
Exec ModelDiscoveredLoaded(t)

end if
KNOW ←r t

end for

literature [6], [7], it is vital for new protocol models to maintain the security
properties of protocols for which security properties have been proved to hold.

In order to prove the correctness of the generated SSPM, we consider Γ

representing the set of all information included in an SSPM. The information
generated by the proposed rules can be divided into three components: mapped
information, user-provided information and participant knowledge-based infor-
mation.

The set of mapped information is denoted by γmap and represents infor-
mation originating directly from SPM. The set of user-provided information is
denoted by γup and represents information originating from the user (e.g. cryp-
tographic algorithms). The set of knowledge-based information originates from
the knowledge available when running the protocol and is denoted by γknow.

By using the above sets Γ = γmap ∪ γup ∪ γknow. The correctness of the
information contained in γmap results from the original protocol model, while
the correctness of the information contained in γup results from the assumption
that the user provides correct information.

The information contained in γknow is generated based on the design prin-
ciples of fail-stop [11] protocols. These principles state that the correctness of
each received term must be verified and the protocol execution must be stopped
immediately in case of invalid terms. By using these principles, the rules we
proposed generate verification properties for each received term found in the
participant’s knowledge set. Protocols that do not follow these rules can not be
modeled with our method.

The the correctness of the generated SSPM follows from the correctness
of the information generated in the Γ set, constructed from the three sets
γmap, γup, γknow for which the correctness has been discussed above.

Towards Automated Secure Web Service Execution 951

4 Experimental Results

In this section we exemplify the construction of a SSPM from a given SPM and
provide a few experimental result from implementing several generated SSPM.

4.1 Constructing the SSPM for the “BAN” protocol

In order to provide an example for constructing an SSPM for a given SPM, we
use the well-known “BAN Concrete Secure Andrew RPC” protocol [15]. This is
a two-party protocol providing a session key exchange using symmetric cryptog-
raphy. The protocol assumes that participants are already in the possession of a
long-term key Kab.

Because of space considerations, we only provide the construction of the
SSPM for the A participant. Based on this, the construction of the SSPM for
the second participant is straight-forward.

The precondition set precA for participant A is precA = {CON TERM (A),
CON TERM (B), CON TERM (Kab)} and the effect set eff A for the same par-
ticipant is eff A = {CON KEYEX (Kab)}. The set typeA = {TYPE UD (A),
TYPE UD(B), TYPE KSYM (A,B,Kab), TYPE KSYM (A,B,K), TYPE NA

(Na), TYPE NA(Nb)} defines the type corresponding to each term and the set
genA = {Na} defines the terms generated by participant A. The participant
name is partA = A and the participant chain is chainA = 〈+(A,Na),−{Na,K,B

}sk(Kab),+{Na}sk(K),−Nb〉.
By applying the rules and algorithms described in the previous sections we

generate the SSPM model. Due to space considerations, instead of describing
the actual SSPM we describe the implementation of the model. The sequential
model is implemented as a WSDL-S specification, while the ontology model is
implemented as a OWL specification.

Part of the resulted WSDL-S specification is given in figure 2 and part of the
graphical representation of the OWL specification is given in figure 3.

...
<xsd:element name="Msg1Request">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="Term1" type="xsd:base64Binary"
wssem:modelReference=".../SecProt.owl#SentTerm1">

</xsd:sequence>
</xsd:complexType>

</xsd:element>
...
<wsdl:operation name="Msg1">

<wsdl:output message="tns:Msg1Request"/>
</wsdl:operation>
<wssem:effect name="SessionKeyExchange"

wssem:modelReference=".../SecProt.owl#SessionKey"/>
...

Fig. 2: Part of the sequential model’s implementation

952 B. Genge and P. Haller

4.2 Executing the Generated Specifications

In order to prove that the SSPM model contains sufficient information for partic-
ipants to execute the generated specifications, we generated several WSDL-S and
OWL specifications corresponding to initiator and respondent protocol roles.

In order to execute the specifications, messages were encoded and transmitted
according to the constructions provided by the WS-Security standard [17]. In the
experiments we conducted, participants downloaded the specification files from
a public server and they were able to execute the protocols based only on the
received descriptions. The participants hardware and software configurations:
Intel Dual Core CPU at 1.8GHz, 1GByte of RAM, MS Windows XP.

Fig. 3: Part of the ontology model’s implementation

Part of the experimental results are given in table 1, where the values corre-
spond to milliseconds. The “Spec. proc” column denotes the specification pro-
cessing time, the “Msg. constr.” column denotes the message construction time
(for output messages) and the “Msg. proc.” column denotes the message pro-
cessing time (for input messages). The table contains two two-party protocols
(“BAN Concrete Andrew Secure RPC”, or more simply BAN, and ISO9798)
and one three-party protocol (Kerberos). The performance differences between
the BAN and ISO9798 protocols are due to the fact that ISO9798 makes use of
public key cryptography, while BAN uses only symmetric cryptography.

5 Related Work

In this section we describe approaches we found in the literature that mostly
relate to our proposal.

An approach that aims at the automatic implementation of security protocols
is given in [2]. This approach uses a formal description as a specification which

Towards Automated Secure Web Service Execution 953

Table 1: Protocol execution timings

Protocol Spec. proc. Msg. constr. Msg. proc. Total
participant (ms) (ms) (ms) (ms)

BAN Init. 14.58 11.81 3.68 30.08
BAN Resp. 14.03 2.86 1.62 18.52

ISO9798 Init. 13.07 35.784 23.30 72.16
ISO9798 Resp. 13.51 6.876 12.24 32.63

Kerb. Init. 1 22.63 0.83 0 23.47
Kerb. Init. 2 12.61 0.55 1.58 14.76
Kerb. Init. 3 2.23 3.34 0.94 6.52
Kerb.Resp. 1 19.28 0 0.41 19.69
Kerb.Resp. 2 10.81 3.379 1.67 15.87
Kerb.Resp. 3 5.25 11.41 3.59 20.26

is executed by participants. The proposed specification does not make use of
Web service technologies, because of which inter-operability and extendability
of systems executing the given specifications becomes a real issue.

Abdullah and Menasc propose in [3] a specification that is constructed as
an XML document from which code is generated. The resulted code is then
compiled and executed by participants. Because of this aspect, our proposal is
more dynamic in the sense that applications can download and execute new
protocols based on the developed specifications automatically, without having
to stop program execution.

The authors from [8] propose a security ontology for resource annotation.
The proposed ontology defines concepts for security and authorization, for cryp-
tographic algorithms and for credentials. This proposal was designed to be used
in the process of security protocol description and selection based on several
criteria. In contrast, our ontologies, have a more detailed construction. For ex-
ample, the ontology from [8] defines a collection of cryptographic algorithms,
however, it does not define the algorithm mode, which is an implementation-
specific information.

There have been several other security ontologies proposed [9], [10] which can
be used to complete our core ontology with additional concepts and properties,
for generating more complex protocol models.

6 Conclusion and Future Work

We developed a novel method for the automated execution of security protocols.
Our approach is based on a semantic security protocol model from which security
protocol specifications are generated. The sequential component of the proposed
model is implemented as a WSDL-S specification while the ontology component
is implemented as an OWL specification.

Constructing the SSPM model is not a trivial task and can induce new flaws
in correct protocols that can lead to attacks. In order to ensure a correct con-

954 B. Genge and P. Haller

struction process, we developed several generating rules and algorithms that map
each component from the input protocol model to a component in the SSPM
model.

As future work we intend to develop a service-based middleware to support
secure distribution of these specifications. The middleware will also be able to
create new protocols based on already existing protocols and distribute the new
specifications to Web services.

References

1. Cremers, C.J.F., Mauw. S.: Checking secrecy by means of partial order reduction. In
Leue S., Systa, T. (eds.) (2003), revised selected papers LNCS, Vol. 3466, Springer
(2005).

2. Mengual, L., Barcia, N., Jimenez, E., Menasalvas, E., Setien, J., Yaguez, J: Au-
tomatic implementation system of security protocols based on formal description
techniques. Proceedings of the Seventh International Symposium on Computers
and Communications, pp. 355–401 (2002).

3. Abdullah, I., Menasc, D: Protocol specification and automatic implementation using
XML and CBSE. IASTED conference on Communications, Internet and Information
Technology (2003).

4. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M., Verma, K.: Web
Service Semantics - WSDL-S. A joint UGA-IBM Technical Note (2005).

5. Clark, J., Jacob, J.: A Survey of Authentication Protocol Literature: Version 1.0.
York University (1997).

6. Gavin, L.: Some new attacks upon security protocols. In Proceedings of the 9th
CSFW, IEEE Computer Society Press, pp. 162–169, (1996).

7. Cremers, C.J.F.: Compositionality of Security Protocols: A Research Agenda.
Electr. Notes Theor. Comput. Sci., Vol. 142, pp. 99–110 (2006).

8. Kim, A., Luo, J., Kang, M.: Security ontology for annotating resources. Lecture
Notes In Computer Science, Vol. 3761, pp. 1483–1499 (2005).

9. Blanco, C., Lasheras, J., Valencia-Garcia, R., Fernandez-Medina, E., Toval, A., Pi-
attini, M.: A systematic review and comparison of security ontologies. Proc. of the
Third International Conference on Availability, Reliability and Security, pp. 813–820
(2008).

10. Denkera, G., Kagal, L., Finin, T.: Security in the semantic web using owl. Infor-
mation Security Technical Report, Vol. 1(10), pp. 51–58 (2005).

11. Gong, L.: Fail-Stop Protocols: An Approach to Designing Secure Protocols. In Pro-
ceedings of the 5th IFIP Conference on Dependable Computing and Fault-Tolerant
Systems, pp. 44–55 (1995).

12. World Wide Web Consortium, OWL Web Ontology Language Reference, W3C
Recommendation (2004).

13. Gutmann, P.: Cryptlib Encryption Toolkit. http://www.cs.auckland.ac.nz/-
pgut001/cryptlib/index.html.

14. OpenSSL Project, version 0.9.8h, http://www.openssl.org/.
15. Laboratoire Specification et Verification, Security Protocol Open Repository,

http://www.lsv.ens-cachan.fr/spore.
16. Organization for the Advancement of Structured Information Standards, SAML

V2.0 OASIS Standard Specification, http://saml.xml.org/ (2007).
17. Organization for the Advancement of Structured Information Standards, OASIS

Web Services Security (WSS), http://saml.xml.org/ (2006).

