intereng
2009

The 4" edition of the

Interdisciplinarity in Engineering International Conference

“Petru Maior” University of Targu Mures, 2009

Multimedia streaming platform based on components

Ovidiu Ritoi', Haller Piroska', Genge Bela'
" “Petru Maior” University of Tg. Mures, N. Iorga st, No. 1, Romania, 540088
Loratoi@engineering.upm.ro, {phaller, bgenge}@upm.ro

Abstract

We propose a platform for distributed multimedia
applications which simplifies the development
process and at the same time ensures application
portability, flexibility and performance. Also this is a
solution for adding streaming components that can
change the transfer and presentation rates
automatically, relying on a monitoring and control
component. The platform is based on Mozilla
technologies so it is portable across different
platforms. It is implemented using the Netscape
Portable Runtime (NSPR) and the Cross-Platform
Component Object Model (XPCOM).

1. Introduction

Recent years have shown an increased interest
towards multimedia rich applications. Multimedia
content ranges from text or simple images to audio
and video data or even animations. The increased
availability of broadband Internet connections leads
the way towards applications that offer high quality
multimedia streaming over wide area networks. In
this context there is a need for solutions that enable
application developers to quickly and effortlessly
develop this kind of applications.

In the same time software components
technologies and component based software
engineering are maturing, in fact the wuse of
components is a sign of maturity in any field of
engineering. The usage of software components
offers a lot of advantages the most important of them
being reusability, a component once developed may
be reused in any number of applications, depending
of how generic are the services it offers. Also the task
of applications developers changes from
development of new software to composition of
existing pieces. Another characteristic property of
software components is encapsulation. This property
hides the internal structure and exposes a well
defined interface through which the services are
accessed. Encapsulation confers high flexibility to
component based software as individual components

289

can be easily replaced with improved ones as long as
their interface remains identical.

Network communication was always an important
issue when handling multimedia content especially
when real time streaming was involved. A research
team tackled this problem and proposed a multimedia
applications middleware which regulated network
traffic, optimized resource usage and offered a high
degree of portability to applications [1].

Recently some groups are proposing a platform
for collaboration systems which integrates mobile
devices [2]. It uses the client-server architecture to
provide multimedia content adapted to the
capabilities of any devices used clients.

There were other attempts to use software
components in the context of multimedia
applications, so [3] proposes an architecture for-real
time video applications based on CORBA. The focus
was on the quality of service by monitoring the
system entities load and network communication. In
time the use of general purpose components was
proved not to be well suited for multimedia based
systems, and dedicated frameworks were developed.

Our goal was to create an interactive Web
application based on components that allows bi-
directional, real time communication between the
resources and the user. This paper describes the
component based platform proposed and
implemented by us for multimedia transfer.

The paper is structured as follows. In section 2
we provide a short description of the Mozilla
platform. In section 3 we provide a detailed
description of the proposed platform and we describe
the interface exposed by the platform and used by
applications. A case study for the Multimedia
Platform is presented in section 4, where beside the
test results made for different type of applications the
proposed platform provides an adaptive stream
control component. We end the paper with a
conclusion and future work in section 5.

2. Mozilla Platform architecture

Mozilla is an open source portable platform,
developed and maintained by the Mozilla

Foundation, best suited for rapid development of

highly interactive visual applications [4]. Its
conceptual architecture is presented in Figure 1.
OPERATING SYSTEM |
T T
| NSPR |
T
PLUGINS
COMPONENTS
T
SECURITY |
| PORTABILITY |
7
| ¥PCOM |
]
KXKPCONNECT
T
USER INTERFACE
Figure 1. — Mozilla Platform Architecture
Mozilla based applications have three

possibilities to access the Operating System: using
the JVM (Java Virtual Machine), using plugins or
through an API called NSPR (Netscape Portable
Runtime). NSPR is a portable API designed to
provide operating system level services like threads
and synchronization support, file and network I/O,
memory management, time management, atomic
operations or process creation.

XPCOM (Cross Platform Component Object
Model) is Mozilla’s object management and
discovery system very similar to Microsoft COM and
remotely to CORBA (Common Object Request
Broker Architecture). It was designed to provide
greater flexibility to the platform and to applications
developed on top of it. These components can be
created in a variety of languages ranging from C,
C++ to JavaScript or Python and are accessed
through a set of interfaces they implement [5]. In
order to provide greater portability and
implementation language independence, interfaces
are described in a special language called XPIDL
(Cross Platform Interface Definition Language), a
variant of CORBA IDL. Object lifetime management
and interface discovery are implemented in a
Microsoft COM style, by reference counting and

special methods for querying all implemented
interfaces.

XPConnect is the technology used to expose
object interfaces to scripting languages, like

JavaScript. User interfaces for applications are
usually described in XUL (Mozilla’s XML based
User interface Language) [6] or HTML the well-
known markup language.

Using the Mozilla platform, we focused on the
development of streaming components, capable of

290

receiving multimedia data from different sources,
decode it, and deliver it to the user interface. The
modular architecture of the Mozilla platform enables
developers to add or remove modules with little
effort, fitting the software to the available hardware
and adjusting functionality to match product
requirements. Our components adjust the transfer
rate continuously, monitoring the devices and
network capabilities. The need of the self-managing
components was recently introduced in Web
technologies [7], but not in implementations.

Another novelty of our approach is that the
platform supports not only binary streaming (through
binary channels), but also a collection of channels
communicating through the use of messages specific
to web services.

3. A Platform for Distributed Multimedia
Applications

3.1. Platform model description

A well known method for providing a high degree
of transparency and portability to distributed
applications is positioning an intermediate layer
called by us Multimedia Platform between the
operating system and the application. In Figure 2 the
multilayer structure of a multimedia applications
platform is presented.

Application Layer

Multimedia
Consumers

Multimedia
Sources

Multimedia Senices

Basic Services

Component
it

. | | Multimedia
Naming

Streaming

Load

oo |

Multimedia Platform

| ChannelHandler |

XSOAPSarver
Channel

XSOAPClient
Channel

XUDPServer
Channel

XUDPClient
Channel

XTCPServer
Channel

XTCFClient
Channel

Channel Layer

Operating System

Network Layer

Figure 2. — Multimedia Platform Architecture

The bottom layer in this architecture is
represented by the network which provides host
computer interconnection and basic data transmission
services. On the following level we have the
operating system which provides services ranging
from process management or memory organization to
communication and synchronization. Above the
operating system we can find the Multimedia

Platform which is divided into two sections: one
channel layer (described later in this paper) and a
service layer.

On top of the Multimedia Platform there is the
application layer which contains multimedia sources
or multimedia consumers.

The Multimedia Platform offers a service for data
streaming between multimedia sources and
consumers. Whenever a consumer needs data from a
source a stream between them has to be established.
The communication is based on the concept of
channels.

A channel, as mentioned in the previous section,
is a logical communication link between two
software entities, like presented in Figure 3. The
communication requires the existence of a
connection between each pair of communicating
applications. Channels embody communication
protocols, while access is provided through one

single interface.
User Interface ' User Interface '
¥

¥
XChannelHandler XChannelHandler

Band
Management
Control

Band
Management
Control

Incoming
Message
Queue

Incoming
Message
Queue

%

Figure 3. Platform Connection Model

The Multimedia Platform provides an interface
for using the channels, named XChannelHandler. By
using this interface we can create or destroy a
channel, send messages to one specific channel and
get the received messages from opened channels.
Each newly created channel is given a unique
channel ID. All operations involving channels are
done through this ID. This interface exposes four
functions used for creating and destroying channels,
sending messages to one channel or receiving
messages from the opened channels.

The platform was designed for being used in
Mozilla web based client application also. In this
case some elements, like receiving channel events
from the platform, had to be taken into consideration.
Due to restrictions imposed by the XPConnect
technology notifications cannot be sent
asynchronously from the component to the user
interface thus an alternative solution had to be found.
One feasible option would be to implement a waiting
queue in the component for stream data or events,
and then at regular time intervals the user interface
would query the object. To prevent memory

291

allocation overflow this queue had to be limited to a
maximum size.

The functions exposed by the interface are:

- int createChannel(channel info*, unsigned
int&). This function is used for creating one new
channel. The channel info is a structure which
contains information for the channel which has to be
created: channel type, host address and host port.
Each time a channel is created a new channel ID is
generated. This value is returned through the second
argument of the function. The function returns
CHANNEL OK on success or a negative error code
otherwise.

- int destroyChannel(const unsigned int). This
function is used for destroying one channel,
identified by the channel ID. The function returns
CHANNEL OK on success or a negative error code
otherwise.

- int sendToChannel(const XMessage*). This
function is used for sending one message to a
channel. The message is encapsulated into an
XMessage object which also contains the channel ID.
The function returns CHANNEL OK on success or a
negative error code otherwise.

- int getMessage(XMessage* &). This function
is used for retrieving one message form the internal
queue. All the messages received from the active
channels are deployed into this internal queue. The
source channel ID is contained into the message
object. The function returns CHANNEL OK if a
message has been received or
CHANNEL NOMESSAGES otherwise.

3.2. Platform interfaces description

In the current form the platform provides six
types of channels, but the Multimedia platform
architecture offers an easy way to add more channels.

Each type of channel represents one component,
which is loaded by the platform. The interface
implemented by the channels is the same for all of
them.

For the moment applications can chose from the

following channel types: XSOAPServerChannel
(channel accepting SOAP client connections),
XSOAPClientChannel (SOAP client channel),

XUDPServerChannel (channel accepting UDP client
connections), XUDPClientChannel (UDP client
channel), XTCPServerChannel (channel accepting
TCP client connections) and XTCPClientChannel
(TCP client channel).

The reason for introducing the concept of the
UDP server and client channels was to create a
similarity between the concept of a TCP connection
and a UDP one. By using these channel types,
applications that make use of TCP channels can be
very easily switched to UPD channels, without

having to change any of the application’s upper-
layers, or the logic on which the application was
built. When a datagram is received using UDP
channels, the source IP and port are analyzed. If they
are not present in the saved internal list of the
XUDPServerChannel channel, this means it is a
“new connection” and a corresponding notification
message is constructed for the upper-layers. Also, the
newly received IP-port pair is saved in the internal
list and a new channel is created which is provided
with a new channel ID.

XIChannel;
,,,,,,,,,,, K XSOAPServerChannel
[
H I
|

I |

|

,,,,,,,,,,,,, IR
|
I
I

XChannelHandler _________ A

Figure 4. General view of the channel architecture

The SOAP channels are created for developing
applications based on WEB Services architecture. It
provides SOAP communication protocol for creating
both server and client applications. The main
problem with today’s distributed systems is
interoperability. Web Services intend to solve this
problem by introducing software components that are
“capable of being accessed via standard network
protocols such as but not limited to SOAP over
HTTP” [8].

SOAP [9] (i.e. Simple Object Access Protocol)
provides a simple mechanism for exchanging
structured and typed information through the form of
XML messages. In order for our platform to support
a standard web service interface, we created a SOAP-
based channel capable of sending and receiving
standard SOAP messages. For the implementation of
the SOAP transport we used the open source gSOAP
library [10].

The SOAP standard does not only provide a
means for exchanging XML data, but also binary
data through the use of base64 or hex encodings.
Because of this, integrating streaming data into
SOAP messages becomes a straight-forward process.

SOAP messages are encoded through the form of
envelopes, containing namespace definitions and a
SOAP body. The body contains the actual messages.
Our platform implements a rawDataMessage in the
SOAP body for exchanging streaming binary data.

An example SOAP message constructed by our
channel is the following:
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlins:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/"
xmins:SOAP-ENC=
"http://schemas.xmlsoap.org/soap/encoding/"
xmins:xsi=
http://www.w3.org/1999/XMLSchema-instance
xmins:xsd=
"http://www.w3.org/1999/XMLSchema"
xmlins:ns= "urn:simple-calc">
<SOAP-ENV:Body
SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">
<ns:rawDataMessage>
<data xsi:type= "xsd:base64Binary">
QUxBIEJBTEEgUE9SVE9DQUxBA 1A
</data></ns:rawDataMessage>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

4. Multimedia platform case study
4.1. Channel traffic load

Once the platform was operational we tested it for
maximum traffic load. For this purpose, one client
and one server application was designed based on the
proposed platform. Both applications ware
developed as standalone applications and neither of
them had a graphical interface. The purpose of those
two applications was to exchange messages at
maximum speed. Once the messages ware received,
they ware extracted from the platform and erased as
quickly as possible, with no other processing made.

The tests were made over the internet using two
Windows machines on a period of 160 minutes with
a 1 minute sampling time. For testing purposes we
used the TCP type of channels. The results are shown
in Figure 5 and Figure 6.

- I/leww

0 20 40 60 80 100 120 140 160

Time (minutes)

Figure 5. Test results for 1024 B packets with
1 minute time interval

0 20 40 60 100 120 140 160

Time (minutes)

Figure 6. Test results for 10024 B packets with
1 minute time interval

The differences between the two tests are in the
size of the packets send through the channels. The
first test used 1024 B packets and the second one
used packets 10 times bigger. The spikes on the
graph appeared when the internal queue size reached
the maximum value and, as a failsafe measure, the
platform stopped reading data from the channels. In
this case, as we can see on the graph also, the
channel traffic load showed a decrease until some of
the incoming messages were processed. After the
internal queue size had dropped under that critical
value the channel data reading started again and the
measured band has increased again. As we can see
from the graphics the maximum traffic load over the
internet using the current architecture of the platform
is in the range of 4000 to 5000 Kb of data. This value
is a satisfying one for a client-site application used in
real time multimedia streaming, and especially for a
web-based client application.

4.2. Video streaming application test results

For testing the platform in a multimedia
environment we had created a stream server running
in XULRunner and a web-based client application
running in “Mozilla Firefox 2.0.0.20”. Both of them
used the proposed multimedia platform. For the
client application, the interaction between the
browser and the platform was made using Java
Script. For testing purposes we opened several
instances of the client application that were
connected to the stream server. Several sources were
also connected to the stream server and the client
applications received frames from them.

Using the model presented above, the video
streaming application was tested on several platforms
with variable number of cameras. Three parameters
were measured, Incoming Bandwidth resulting from
data received on the communication channel
established with the stream server, Outgoing
Bandwidth resulting from the total size of the video
frames transmitted to and displayed by the user
interface and Queue Size representing the number of
video frames stored in the object’s waiting queue. All

293

tests were conducted with the same application,
stream server and cameras on a period of 10 minutes
with a 4 seconds sampling interval. Once again the
TCP based channels were used again. The results are
presented in the following figures.

In Bound - Out Bound (Bps)

44

80
a
6
8
0
2
4
440,
460
20
560
580
60

[e=1 Camera —m—2 Cameras —&—3 Cameras |

Figure 6. Bandwidth on Windows XP

In Bound - Out Bound (Bps)

100
180
240
260
340
400
420
520
560
580

[e=1 Camera =2 Cameras —&—3 Cameras |

Figure 7. Bandwidth on Mac OS X

In Bound - Out Bound (Bps)

160000

140000

120000 1

100000

80000

60000

40000

20000

-20000

[=#=1 Camera —m—2 Cameras —&—3 Cameras |

Figure 8. Bandwidth on Linux

Elemnts In Queue

2500

2000

1500

1000

500

ooooooooooooooooooooooooooooooo
ReBB33RETBEBEIIERE

Figure 9. Queue size on Linux

Test results show that the application performs
well on both Windows and Mac OS environments
and although there are oscillations in bandwidth, the
waiting queue never grows bigger than two frames
which, considering a data rate of 7-10 fps from each
camera, translates into a very small delay, even when
receiving stream from three different cameras. The
performance of the same application is significantly
worst in the Linux environment especially when
video stream is received from more than one camera.

The operating systems are not responsible for the
different performances of the platform. As a mater of
fact, the Incoming Bandwidth on all of the tested
platforms was in the same range. The differences
ware because of the Quigoing Bandwidth. Mozilla
Firefox has a different behavior on those
environments when rendering frames.

Figure 8 shows that when displaying images from
three different cameras the difference between
incoming and outgoing bandwidth is quite high,
which produces an abrupt accumulation of frames in
the waiting queue, as it can be seen from Figure 9.
From this increase of the waiting queue size results
an unacceptable delay in the video stream.

4.3. Adaptive stream control

For using an adaptive stream control, the stream
servers need to have a mechanism for setting the
prescribed value for client bandwidth. Some of them
accomplish this by recompensing the multimedia
stream accordingly to the prescribed value. Other
servers accomplish this by dropping some of the
frames that should be sent to the client.

Exploiting this facility could improve
application’s performance on some platforms by
reducing delays in stream, especially when a large
number of devices are observed. Because the internet
bandwidth can vary in time and the application is an
interactive one where the number of devices from
which stream is received can vary in time, an
adaptive control mechanism has to be implemented.
A possible solution would be to introduce a new
XPCOM component responsible for gathering
parameter values measured by the channels and
taking control decisions according to them.

In the proposed model the Band Management
Control component has a passive role. Every channel
reports periodically to it the Incoming Bandwidth.
The Outgoing Bandwidth is also computed
periodically.

The adaptive control algorithm is using those two
values along with the Queue Size for computing the
maximum Incoming Bandwidth for each channel.

This value is send to the streaming server, which
in turn will set the prescribed value for client

294

bandwidth. Because out stream server accomplishes
this by dropping some frames video quality will
decrease but there will not be any delays, thus
maintaining the real-time quality of the stream. Test
results are presented in Figure 10 and Figure 11.

In Band - Out Band (Bps)

S

i* 1-1 wu

Hl

L L4

A

[e=1 Camera =2 Cameras —&—3 Cameras |

Figure 10. Controlled bandwidth on Linux

Elements In Queue

[Ze—1camera —=—2c.

Figure 11. Queue size on Linux with bandwidth
control present

Figure 11 clearly shows that when bandwidth
control is present, even if images from 3 cameras are
received, the size of the waiting queue decreases and
then maintains its value in a relatively small interval,
under 20 frames. Taking into account that the
number of frames captured from a camera in one
second ranges between 7 and 10 frames this produces
only a small, acceptable, delay in the video stream.

4.4. Scalability issues

Further tests have been made in order to
demonstrate that the model we proposed is scalable.
Four separate channels were used each handling up
to 3 different streams summing up to a total of 12
simultaneous video streams. System’s performance
can be seen in Figure 12 and Figure 13.

These are the results only for one operating
system but the others behave in a very similar
manner. They show that the system can handle 12
simultaneous streams and although there is an initial
build up of elements in the platform’s queue the
control mechanism quickly reacts and reduces the

load by limiting the maximum bandwidth. Such a
rapid response is obtained by taking into account the
current incoming and outgoing values of the
bandwidth when adjusting its maximum value.

In Band - Out Band (Bps)

;;»

o
> ’_’/J

o

[—e—4 Cameras —m—8 Cameras

Figure 12. Bandwidth on Windows

Elements In Queue

mmmmmmmmmmmmmmmmmmmmmmmmmm

[-#—4 cameras —w—8 Cameras

Figure 13. Queue size on Windows

Figure 14 shows the response in case of a
variable number of streams. There is a small
accumulation of elements in queue whenever the
number of cameras is increased but it soon
disappears. Also a small spike on the graph can be
seen when the number of cameras is decreased, this
is because the bandwidth regulator tries to use as
much as possible from the available resources thus
increasing the maximum bandwidth automatically
and in this way causing a small accumulation of
elements before it stabilizes.

Elements In Queue / Number Of Cameras

TEeRIESEBLIITOBEIENREIES 8§83 8T LR

‘ —e— Elements in queue —m— Number of cameras ‘

Figure 14. Response to variable number of streams

295

5. Conclusions and future work

In this paper we proposed a component based,
real time streaming, portable, Web platform for
distributed multimedia applications, developed on
the Mozilla Platform.

Based on this model we implemented a set of
components that can be used in any kind of
multimedia streaming application. Furthermore a
monitoring and control mechanism was presented,
which allows the application to dynamically change
transfer rates in order to reduce delays in the stream
caused by slow presentation rates.

This approach also simplifies the development of
multimedia centered applications and ensures their
transparency, portability and performance. By
providing a unique interface for all supported
channel types, application developers can easily
change the underlying transport and channel type.

As future work we intend to extend the adaptive
stream control mechanism and to prepare the
multimedia platform for usage in a dynamic QoS
environment. This means that applications could fine
tune the adaptive control mechanism in such a way
that different types of multimedia content should be
treated different. What this means is the fact that
audio streams could be preferred over video ones or
even the other way around if necessary.

References

[1] M. Lohse, M. Repplinger, P. Slusallek, “4n Open
Middleware Architecture for Network-Integrated
Multimedia”, Proceedings of the Joint International
Workshops on Interactive Distributed Multimedia Systems
and Protocols for Multimedia Systems: Protocols and
Systems for Interactive Distributed Multimedia, Portugal,
pp. 327-338, 2002.

[2] X. Su, B. S. Prabhu, C. C. Chu, R. Gadh, “Middleware
for Multimedia Mobile Collaborative — System”,
Proceedings of IEEE ComSoc Third Annual Wireless
Telecommunications Symposium (WTS 2004), USA, pp.
112-119, 2004.

[3] V. Kalogeraki, L. E. Moser, P. M. Melliar-Smith, “4
CORBA Framework for Managing Real-Time Distributed
Multimedia Applications”, Proceedings of the 33rd Hawaii
International Conference on System Sciences (HICSS
2000), Vol. 8, Hawaii, pp. 8042, 2000.

[4] Alan Grosskurth, Ali Echihabi, “Concrete Architecture
of Mozilla”.

[5] Doug Turner, lan Oeschger, “Creating XPCOM
Components”, Brownhen Publishing, 2003.

[6] Nigel McFarlane, “Rapid Application Development
with Mozilla”, Prentice Hall, 2003.

[7] H. Liu and M. Parashar, ,, Rule-based Monitoring and
Steering of Distributed Scientific =~ Applications”,
International Journal of High Performance Computing and
Networking (IJHPCN), issue 1, 2005.

[8] http://www.oasis-open.org/committees/wsia/
glossary/wsia-draft-glossary-03.htm

[9] http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/

[10] Robert A. van Engelen and Kyle Gallivan, “The
gSOAP Toolkit for Web Services and Peer-To-Peer
Computing Networks”, in the proceedings of the 2nd IEEE
International Symposium on Cluster Computing and the
Grid (CCGrid2002), pp. 128-135, May 21-24, 2002.

296

